Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon.
نویسندگان
چکیده
The structural gene (fdhF) for the 80-kDa selenopolypeptide of formate dehydrogenase (formate:benzyl viologen oxidoreductase, EC 1.2.--.--) from Escherichia coli contains an in-frame UGA codon at amino acid position 140 that is translated. Translation of gene fusions between N-terminal parts of fdhF with lacZ depends on the availability of selenium in the medium when the hybrid gene contains the UGA codon; it is independent of the presence of selenium when an fdhF portion upstream of the UGA position is fused to lacZ. Transcription does not require the presence of selenium in either case. By localized mutagenesis, the UGA codon was converted into serine (UCA) and cysteine (UGC and UGU) codons. Each mutation relieved the selenium dependency of fdhF mRNA translation. Selenium incorporation was completely abolished in the case of the UCA insertion and was reduced to about 10% when the UGA was replaced by a cysteine codon. Insertion of UCA yielded an inactive fdhF gene product, while insertion of UGC and UGU resulted in polypeptides with lowered activities as components in the system formerly known as formate hydrogenlyase. Altogether the results indicate that the UGA codon at position 140 directs the cotranslational insertion of selenocysteine into the fdhF polypeptide chain.
منابع مشابه
The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to ...
متن کاملFeatures of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine.
The fdhF gene encoding the 80-kDa selenopolypeptide subunit of formate dehydrogenase H from Escherichia coli contains an in-frame TGA codon at amino acid position 140, which encodes selenocysteine. We have analyzed how this UGA "sense codon" is discriminated from a UGA codon signaling polypeptide chain termination. Deletions were introduced from the 3' side into the fdhF gene and the truncated ...
متن کاملRecognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress.
Introduction UGA codons function alternatively either as selenocysteine codons or as termination signals both in prokaryotes and in eukaryotes. This cotranslational incorporation of selenocysteine at UGA codons has earned it the designation of the 21st amino acid [ 11. Considerable progress has been made recently in unravelling the process of selenocysteine incorporation, particularly in prokar...
متن کاملRecoding the genetic code with selenocysteine.
Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenop...
متن کاملNitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine.
The fdnGHI operon of Escherichia coli encodes nitrate-inducible formate dehydrogenase. We report here the entire nucleotide sequence of fdnGHI. The sequence contains three open reading frames of sizes appropriate to encode the three subunits of formate dehydrogenase-N. fdnG contains an in-frame UGA codon that specifies selenocysteine incorporation, and the predicted amino acid sequence of FdnG ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 10 شماره
صفحات -
تاریخ انتشار 1987